> Сферические и плоские волны

Научитесь различать сферические и плоские волны . Читайте, какую волну называют плоской или сферической, источник, роль волнового фронта, характеристика.

Сферические волны возникают из точечного источника в сферическом узоре, а плоские – бесконечные параллельные плоскости, нормальные к вектору фазовой скорости.

Задача обучения

  • Вычислить источники сферических и плоских волновых узоров.

Основные пункты

  • Волны создают конструктивные и деструктивные помехи.
  • Сферические возникают из одного точечного источника в сферической форме.
  • Плоская вода – частотная, волновые фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой.
  • В реальности не выйдет получить идеальную плоскую волну, но многие приближаются к такому состоянию.

Термины

  • Деструктивные помехи – волны мешают друг другу, а точки не совпадают.
  • Конструктивные – волны мешают и точки расположены в идентичных фазах.
  • Волновой фронт – мнимая поверхность, простирающаяся сквозь осциллирующие точки в фазе среды.

Сферические волны

Какую волну называют сферической? Разработать метод по определению способа и места распространения волн удалось Кристиану Гюйгенсу. В 1678 году он выдвинул предположение, что каждая точка, с которой сталкивается световая помеха, превращается в источник сферической волны. Суммирование вторичных волн вычисляет вид в любом времени. Этот принцип показал, что при контакте волны создают деструктивные или конструктивные помехи.

Конструктивные формируются, если волны полностью пребывают в фазе друг друга, а финальная усиливается. В деструктивных волны не соответствуют по фазам и финальная просто сокращается. Волны возникают из одного точечного источника, поэтому формируются в сферическом узоре.

Если волны генерируются из точечного источника, то выступают сферическими

Этот принцип применяет закон преломления. Каждая точка на волне создает волны, мешающие друг другу конструктивно или деструктивно

Плоские волны

Теперь давайте поймем, какую волну называют плоской. Плоская отображает частотную волну, фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой, расположенной перпендикулярно вектору фазовой скорости. В реальности нельзя добыть истинную плоскую волну. Только плоская с бесконечной протяжностью сможет ей соответствовать. Правда, многие волны приближаются к такому состоянию. Например, антенна формирует поле, выступающее примерно плоским.

Плоские отображают бесконечное число волновых фронтов, нормальных к стороне распространения

Колебательный процесс, распространяющийся в среде в виде волны, фронт которой представляет собой плоскость , называется плоской звуковой волной . На практике плоская волна может образовываться источником, линейные размеры которого велики по сравнению с длинной излученной им волн, и если зона волнового поля находится на достаточно большом удалении от него. Но так обстоит дело в неограниченной среде. Если источник огражден каким-либо препятствием, то классический пример плоской волны, это – колебания, возбужденные жестким несгибаемым поршнем в длинной трубе (волноводе) с жесткими стенками, если диаметр поршня значительно меньше длины - излучаемых волн. Поверхность фронта в трубе из-за жестких стенок не меняется по мере распространения волны по волноводу(см. рис. 3.3). Потерями звуковой энергии на поглощение и рассеяние в воздушной среде пренебрегаем.

Если излучатель (поршень) совершает колебания по гармоническому закону с частотой
, а размеры поршня (диаметр волновода) значительно меньше длины звуковой волны, то давление, создаваемое около его поверхности,
. Очевидно, что на расстояниих давление будет
, где
– время пробега волны от излучателя до точкиx. Это выражение удобнее записать, как:
, где
- волновое число распространения волны. Произведение
- определяемый фазовый набег колебательного процесса в точке, удаленной на расстояниех от излучателя.

Подставляя полученное выражение в уравнение движения (3.1), проинтегрируем последнее относительно колебательной скорости:

(3.8)

Вообще для произвольного момента времени оказывается, что:

. (3.9)

Правая часть выражения (3.9) – характеристическое, волновое, или удельное акустическое сопротивление среды (импеданс). Само уравнение (3.), иногда, называется акустическим «законом Ома». Как следует из решения, полученное уравнение справедливо в поле плоской волны. Давление и колебательная скорость синфазны , что является следствием чисто активного сопротивления среды.

Пример: Максимальное давление в плоской волне
Па. Определить амплитуду смещения частиц воздуха по частоте?

Решение: Так как , тогда:

Из выражения (3.10) следует, что амплитуда звуковых волн очень мала, по крайней мере, в сравнении с размерами самих источников звука.

Помимо скалярного потенциала, давления и колебательной скорости звуковое поле характеризуется и энергетическими характеристиками, важнейшей из которых является интенсивность - вектор плотности потока энергии, переносимой волной за единицу времени. По определению
- есть результат произведения звукового давления на колебательную скорость.

При отсутствии потерь в среде плоская волна, теоретически, может распространяться без ослабления на сколь угодно большие расстояния, т.к. сохранение формы плоского фронта свидетельствует об отсутствии «расходимости» волны, а, значит, и об отсутствии ослабления. Иначе обстоит дело, если волна обладает искривленным фронтом. К подобным волнам относят, прежде всего, сферическую и цилиндрическую волны.

3.1.3. Модели волн с неплоским фронтом

У сферической волны поверхность равных фаз является сферой. Источником такой волны также является сфера, все точки которой колеблются с одинаковыми амплитудами и фазами, а центр остается неподвижен (см. рис. 3.4, а).

Сферическая волна описывается функцией, являющейся решением волнового уравнения в сферической системе координат, для потенциала волны, распространяющейся от источника:

. (3.11)

Действуя по аналогии с плоской волной, можно показать, что на расстояниях от источника звука значительно больше длины изучаемых волн:
. Это значит, что акустический «закон Ома» выполняется и в данном случае. В практических условиях сферические волны возбуждаются, преимущественно, компактными источниками произвольной формы, размеры которых значительно меньше длины возбуждаемых звуковых или ультразвуковых волн. Иными словами, «точечный» источник излучает, преимущественно, сферические волны. На больших расстояниях от источника или, как принято говорить, в «дальней» зоне сферическая волна применительно к ограниченным по размерам участкам волнового фронта ведет себя как плоская волна, или как говорят: «вырождается в плоскую волну». Требования к малости участка определяются не только частотой, но
- разностью расстояний между сравниваемыми точками. Отметим, что указанная функция
имеет особенность:
при
. Это вызывает определенные трудности при строгом решении дифракционных задач, связанных с излучением и рассеянием звука.

В свою очередь цилиндрические волны (поверхность волнового фронта - цилиндр) излучаются бесконечно длинным пульсирующим цилиндром (см. рис.3.4).

В дальней зоне выражение для функции потенциала такого источника асимптотически стремится к выражению:


. (3.12)

Можно показать, что и в этом случае выполняется соотношение
. Цилиндрические волны, как и сферические, в дальней зоневырождаются в плоские волны.

Ослабление упругих волн при распространении связано не только с изменением кривизны волнового фронта («расходимостью» волны), но и с наличием «затухания» т.е. ослабления звука. Формально наличие затухания в среде можно описать, представив волновое число комплексным
. Тогда, например, для плоской волны давления можно получить:Р(x , t ) = P макс
=
.

Видно, что вещественная часть комплексного волнового числа описывает пространственную бегущую волну, а мнимая часть характеризует ослабление волны по амплитуде. Поэтому величина  называется коэффициентом ослабления (затухания),  - величина размерная (Непер/м). Один «Непер» соответствует изменению амплитуды волны в «е» раз при перемещении волнового фронта на единицу длины. В общем случае ослабление определяется поглощением и рассеянием в среде:  =  погл +  расс. Указанные эффекты определяются разными причинами и могут рассматриваться отдельно.

В общем случае поглощение связано с необратимыми потерями звуковой энергии при ее превращении в тепло.

Рассеяние связано с переориентацией части энергии падающей волны на другие направления, не совпадающие с падающей волной.

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Изучение волн начнем с простейшего случая одномерного движения среды, когда все характеристики волны зависят только от одной декартовой координаты, напрймер координаты х. Поверхности, на которых фаза данной волны имеет одно и то же значение, называют фронтами волны. В этом случае фронты - плоскости

Поскольку давление меняется только в направлении, перпендикулярном к фронтам, скорость частиц в одномерном движении также направлена перпендикулярно к фронтам.

Для одномерного звукового поля можно найти общее решение волнового уравнения, принимающего в этом случае вид

Сделаем в этом уравнении замену переменных

Частные производные давления по и по х выразятся через производные по новым переменным следующим образом:

Повторяя дифференцирование, найдем

Подставляя полученные выражения в волновое уравнение, получим

Отсюда следует, что частная производная др/да должна быть независимой от переменной ее можно считать произвольной

функцией от а:

Интегрируя по а, найдем

где также произвольные функции своих аргументов. Возвращаясь к исходным переменным, найдем, что общее решение одномерного волнового уравнения - так называемое «даламберово решение» - имеет вид

Любая функция от или от представит собой бегущую плоскую волну: первая - волну, бегущую направо, вторая - волну, бегущую налево. Общее решение одномерной задачи сводится к сумме двух плоских волн произвольной формы, бегущих навстречу друг другу. Каждая из этих волн в отдельности перемещается в направлении положительной (или отрицательной) оси х как твердое тело со скоростью с.

Таким образом, введение понятия скорости для плоской бегущей волны в среде делается оправданным. Однако оно неоднозначно. Вводя это понятие, мы неявно предполагаем, что волна движется как твердое тело в направлении оси х. Но картина нисколько не изменится, если считать, что возмущение движется как твердое тело в направлении, составляющем с осью х угол со скоростью , как это доказано на рис. 17.1 для синусоидальной волны. Оба случая принципиально неразличимы, так как неразличимы состояния возмущения среды в любых точках одного и того же фронта волны. Поэтому пока мы будем считать данное определение направления и величины скорости волны условным. Ниже, в гл. III, мы увидим, что есть и принудительные основания принимать именно такое определение, помимо очевидного удобства.

Приведем сводку важнейших соотношений между характеристиками бегущей плоской волны. Пусть давление в волне задано в виде

где верхний знак соответствует волне, бегущей в положительном, а нижний - в отрицательном направлении оси х. Связь между давлением, скоростью и сжатием в бегущей волне имеет вид

Отсюда, пользуясь (14.2), найдем еще соотношения

Участки среды, в которых сжатие (а значит, и давление) положительны, движутся в сторону бега волны, а участки отрицательных давлений движутся навстречу бегу волны. Частицы, в которых звуковое давление равно нулю, имеют и скорость, равную нулю.

Рис. 17.1. Двухмерный профиль давлений в плоской синусоидальной волне в плоскости, проходящей через направление распространения волны. Перемещение волны в направлении а со скоростью с неотличимо от перемещения в направлении со скоростью .

Если всегда считать направление бега волны положительным, то в положительном направлении будут двигаться сжатые участки, а в отрицательном - разреженные участки среды, и в формулах (17.2) и (17.3) всегда можно брать знак плюс. Отношение скорости частиц к давлению в бегущей волне при таком выборе положительного направления в любой момент времени равно величине

Это отношение называют волновой проводимостью среды. Она не зависит от формы волны, а только от свойств среды.

Величину обратную волновой проводимости, называют волновым сопротивлением среды.

Все приведенные здесь формулы справедливы только в отсутствие дисперсии.

Полученная нами запись плоской бегущей волны связана с выбором оси х в направлении распространения волны. Напишем

уравнение плоской волны в векторной форме. Это позволит в дальнейшем получить выражение для плоской волны и в любой системе координат.

Для этого введем вектор перпендикулярный к фронтам волны и равный по модулю обратному значению скорости: Вектор будем называть вектором медленности волны. Обозначим радиус-вектор произвольной точки среды, проведенный из начала координат, через Очевидно, Следовательно, уравнение бегущей плоской волны можно записать в виде

Рис. 17.2. Вектор медленности плоской волны и его проекции на координатные оси и координатные плоскости. Жирные стрелки - вектор медленности исходной волны и векторы медленности следов волны на оси х и на плоскости

Последняя запись не связана с выбором системы координат. Если для плоской бегущей волны известна зависимость давления от времени в какой-либо точке и вектор медленности 5 известен, то уравнение волны получится путем замены в этой зависимости времени на бином (где радиус-вектор проведен из данной точки). Соотношение (17.2) между скоростью частиц и давлением в плоской волне можно записать, пользуясь вектором медленности, в векторной форме:

Пользуясь (17.5), можно записать выражение для волны в координатной форме при любом расположении координатных осей относительно направления распространения волны:

Здесь проекции вектора медленности на координатные оси; углы вектора медленности с координатными осями (рис. 17.2).

«След» плоской волны на какой-либо оси, например на оси можно рассматривать как одномерную волну, бегущую вдоль оси х. Аналогично «след» волны на какой-нибудь плоскости, например плоскости можно рассматривать как двухмерную волну, бегущую на плоскости Временная зависимость всех величин, характеризующих волну, во всех следах та же, что и в исходной

волне, но медленности следов другие: они равны проекциям вектора медленности исходной волны на соответственные оси или плоскости. Так, медленность следа на оси х есть , а медленность следа на плоскости есть .

Вектор медленности исходной плоской волны и медленности ее следов на осях и плоскостях координат находятся в тех же соотношениях друг с другом, как вектор скорости движущейся материальной точки и скорости ее проекций на оси и на плоскости. При волновом подходе к акустическим процессам вектор медленности - понятие, имеющее непосредственный физический смысл, точно так же, как в механике материальных точек имеет смысл вектор скорости. Понятие же вектора скорости для волн имеет не больший смысл, чем понятие вектора медленности для движущейся точки. Лишь для одномерных движений, когда скорость или медленность можно считать скалярами и принципиально нет вопроса о проекциях или следах рассматриваемого объекта, можно было бы на равных правах применять понятие скорости и медленности как для волн, так и для материальных точек. Применимо всегда для тех и для других объектов и понятие медленности или скорости по модулю. В этом смысле обычно и говорят о скорости волн, а не о медленности; но так говорят только в силу привычки: мы чаще обсуждаем движение тел, чем волн.

То обстоятельство, что для волн понятие вектора скорости не имеет смысла и на его место становится понятие вектора медленности волны, связано с принципиальным различием между механикой волн и механикой материальных точек, о котором мы уже говорили в § 1.


Плоской волной называется волна с плоским фронтом. При этом лучи параллельные.

Плоская волна возбуждается поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Площадь этого участка может быть тем больше, чем дальше он находится от излучателя.

Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют «трубу». Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, так как не происходит растекание энергии за пределы стенок этой трубы. На практике это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.

Сигналы в различных точках луча плоской волны отличаются фазой колебаний. Если звуковое давление на некотором участке плоского волнового фронта синусоидальное, то его можно представить в экспоненциальном виде р зв = р тзв - exp(icot). На расстоянии г по лучу оно будет запаздывать от источника колебаний:

где г/с зв - время, за которое проходит волна от источника до точки на расстоянии г вдоль луча к = (о/ с зъ = 2ж/Д - волновое число, которое определяет фазовый сдвиг между сигналами во фронтах плоской волны, находящихся на расстоянии г.

Реальные звуковые волны более сложные, чем синусоидальные, однако выкладки, проводимые для синусоидальных волн, справедливы и для несинусоидальных сигналов, если не рассматривать частоту как константу, т.е. рассматривать сложный сигнал в частотной области. Это возможно до тех пор, пока процессы распространения волн остаются линейными.

Волна, фронт которой представляет собой сферу, называется сферической. Лучи при этом совпадают с радиусами сферы. Сферическая волна формируется в двух случаях.

  • 1. Размеры источника много меньше длины волны, и расстояние до источника позволяет считать его точкой. Такой источник называется точечным.
  • 2. Источник представляет собой пульсирующую сферу.

В обоих случаях предполагается, что переотражения волны отсутствуют, т.е. рассматривается только прямая волна. Чисто сферических волн в сфере интересов электроакустики не бывает, это такая же абстракция, как и плоская волна. В области средневысоких частот конфигурация и размеры источников не позволяют считать их ни точкой, ни сферой. А в области низких частот непосредственное влияние начинает оказывать, как минимум, пол. Единственная близкая к сферической волна формируется в заглушенной камере при малых габаритах излучателя. Но рассмотрение этой абстракции позволяет уяснить некоторые важные моменты распространения звуковых волн.

На больших расстояниях от излучателя сферическая волна вырождается в плоскую волну.

На расстоянии г от излучателя звуковое давление может быть

представлено в виде р зв = -^-ехр (/ (со? t - к? г)), где p-Jr - амплитуда

звукового давления на расстоянии 1 м от центра сферы. Уменьшение звукового давления с удалением от центра сферы связано с растеканием мощности на все большую площадь - 4пг 2 . Суммарная мощность, перетекающая через всю площадь волнового фронта, не меняется, поэтому мощность, приходящаяся на единицу площади, уменьшается пропорционально квадрату расстояния. А давление пропорционально корню квадратному из мощности, поэтому оно уменьшается пропорционально собственно расстоянию. Необходимость нормирования к давлению на некотором фиксированном расстоянии (1 мв данном случае) связана с тем же фактом зависимости давления от расстояния, только в обратную сторону - при неограниченном приближении к точечному излучателю звуковое давление (а также колебательная скорость и смещение молекул) неограниченно увеличивается.

Колебательную скорость молекул в сферической волне можно определить из уравнения движения среды:

Итого, колебательная скорость v m = ^ зв ^ + к г? фазовый

/V е зв кг

сдвиг относительно звукового давления ф = -arctgf ---] (рис. 9.1).

Упрощенно говоря, наличие фазового сдвига между звуковым давлением и колебательной скоростью связано с тем, что в ближней зоне с удалением от центра звуковое давление гораздо быстрее убывает, чем запаздывает.


Рис. 9.1. Зависимость фазового сдвига ф между звуковым давлением р и колебательной скоростью v от г/к (расстояние вдоль луча к длине волны)

На рис. 9.1 можно видеть две характерные зоны:

  • 1) ближнюю г/Х« 1.
  • 2) дальнюю г/Х» 1.

Сопротивление излучения сферы радиуса г


Это значит, что не вся мощность расходуется на излучение, часть запасается в некоем реактивном элементе и затем возвращается излучателю. Физически этому элементу можно сопоставить присоединенную массу среды, колеблющуюся с излучателем:

Легко видеть, что присоединенная масса среды уменьшается с ростом частоты.

На рис. 9.2 представлена частотная зависимость безразмерных коэффициентов вещественной и мнимой составляющих сопротивления излучения. Излучение эффективно, если Re(z(r)) > Im(z(r)). Для пульсирующей сферы это условие выполняется при кг > 1.



Close