Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любогох из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство. Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называютподынтегральным выражением , а f(x) подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

Геометрический смысл неопределенного интеграла. График первообразной Д(х) называют интегральной кривой. В системе координат х0у графики всех первообразных от данной функции представляют семейство кривых, зависящих от величины постоянной С и получаемых одна из другой путем параллельного сдвига вдоль оси 0у. Для примера, рассмотренного выше, имеем:

J 2 х^х = х2 + C.

Семейство первообразных (х + С) геометрически интерпретируется совокупностью парабол.

Если из семейства первообразных нужно найти одну, то задают дополнительные условия, позволяющие определить постоянную С. Обычно с этой целью задают начальные условия: при значении аргумента х = х0 функция имеет значение Д(х0) = у0.

Пример. Требуется найти ту из первообразных функции у = 2 х, которая принимает значение 3 при х0 = 1.

Искомая первообразная: Д(х) = х2 + 2.

Решение. ^2х^х = х2 + C; 12 + С = 3; С = 2.

2. Основные свойства неопределенного интеграла

1. Производная неопределенного интеграла равна подинтегральной функции:

2. Дифференциал неопределенного интеграла равен подинтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме самой этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной, который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

3. Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием . При сведении данного интеграла к табличному часто используются следующие преобразования дифференциала (операция «подведения под знак дифференциала »):

Вообще, f’(u)du = d(f(u)). эта (формула очень часто используется при вычислении интегралов.

Найти интеграл

Решение. Воспользуемся свойствами интегралаи приведем данный интеграл к нескольким табличным.

4. Интегрирование методом подстановки.

Суть метода заключается в том, что мы вводим новую переменную, выражаем подынтегральную функцию через эту переменную, в результате приходим к табличному (или более простому) виду интеграла.

Очень часто метод подстановки выручает при интегрировании тригонометрических функций и функций с радикалами.

Пример.

Найти неопределенный интеграл .

Решение.

Введем новую переменную . Выразимх через z :

Выполняем подстановку полученных выражений в исходный интеграл:

Из таблицы первообразных имеем .

Осталось вернуться к исходной переменной х :

Ответ:

Определение. Функция F (x) называется первообразной для функции f (x) на данном промежутке, если для любого х из данного промежутка F"(x)= f (x).

Основное свойство первообразных.

Если F (x) – первообразная функции f (x), то и функция F (x)+ C , где C –произвольная постоянная, также является первообразной функции f (x) (т.е. все первообразные функции f(x) записываются в виде F(x) + С).

Геометрическая интерпретация.

Графики всех первообразных данной функции f (x) получаются из графика какой-либо одной первообразной параллельными переносами вдоль оси Оу.

Таблица первообразных.

Правила нахождения первообразных .

Пусть F(x) и G(x) – первообразные соответственно функций f(x) и g(x). Тогда:

1. F ( x ) ± G ( x ) – первообразная для f ( x ) ± g ( x );

2. а F ( x ) – первообразная для а f ( x );

3. – первообразная для а f ( kx + b ).

Задачи и тесты по теме "Первообразная"

Изучив данную тему, Вы должны знать, что называется первообразной, ее основное свойство, геометрическую интерпретацию, правила нахождения первообразных; уметь находить все первообразные функций с помощью таблицы и правил нахождения первообразных, а также первообразную, проходящую через заданную точку. Рассмотрим решение задач по данной теме на примерах. Обратите внимание на оформление решений.

Примеры.

1. Выяснить, является ли функция F (x ) = х 3 – 3х + 1 первообразной для функции f (x ) = 3(х 2 – 1).

Решение: F"(x ) = (х 3 – 3х + 1)′ = 3х 2 – 3 = 3(х 2 – 1) = f (x ), т.е. F"(x ) = f (x ), следовательно, F(x)является первообразной для функции f(x).

2. Найти все первообразные функции f(x) :

а) f (x ) = х 4 + 3х 2 + 5

Решение: Используя таблицу и правила нахождения первообразных, получим:

Ответ:

б) f (x ) = sin(3x – 2)

Решение:

На этой странице вы найдёте:

1. Собственно, таблицу первообразных — её можно скачать в формате PDF и распечатать;

2. Видео, посвящённое тому, как этой таблицей пользоваться;

3. Кучу примеров вычисления первообразной из различных учебников и контрольных работ.

В самом видео мы разберём множество задач, где требуется посчитать первообразные функций, зачастую довольно сложных, но главное — не являющихся степенными. Все функции, сведённые в таблицу, предложенную выше, необходимо знать наизусть, подобно производным. Без них невозможно дальнейшее изучение интегралов и их применение для решения практических задач.

Сегодня мы продолжаем заниматься первообразными и переходим у чуть более сложной теме. Если в прошлый раз мы рассматривали первообразные только от степенных функций и чуть более сложных конструкций, то сегодня мы разберем тригонометрию и многое другое.

Как я говорил на прошлом занятии, первообразные в отличие от производных, никогда не решаются «напролом» с помощью каких-либо стандартных правил. Более того, плохая новость состоит в том, что в отличие от производной, первообразная вообще может не считаться. Если мы напишем совершенно случайную функцию и попытаемся найти ее производную, то это с очень большой вероятностью у нас получится, а вот первообразная практически никогда в этом случае не посчитается. Но есть и хорошая новость: существует довольно обширный класс функций, называемых элементарными, первообразные от которых очень легко считаются. А все прочие более сложные конструкции, которые дают на всевозможных контрольных, самостоятельных и экзаменах, на самом деле, составляются из этих элементарных функций путем сложения, вычитания и других несложных действий. Первообразные таких функций давно посчитаны и сведены в специальные таблицы. Именно с такими функциями и таблицами мы будем сегодня работать.

Но начнем мы, как всегда, с повторения: вспомним, что такое первообразная, почему их бесконечно много и как определить их общий вид. Для этого я подобрал две простенькие задачки.

Решение легких примеров

Пример № 1

Сразу заметим, что $\frac{\text{ }\!\!\pi\!\!\text{ }}{6}$ и вообще наличие $\text{ }\!\!\pi\!\!\text{ }$ сразу намекает нам, что искомая первообразная функции связана с тригонометрией. И, действительно, если мы посмотрим в таблицу, то обнаружим, что $\frac{1}{1+{{x}^{2}}}$ — не что иное как $\text{arctg}x$. Так и запишем:

Для того чтобы найти, необходимо записать следующее:

\[\frac{\pi }{6}=\text{arctg}\sqrt{3}+C\]

\[\frac{\text{ }\!\!\pi\!\!\text{ }}{6}=\frac{\text{ }\!\!\pi\!\!\text{ }}{3}+C\]

Пример № 2

Здесь также речь идет о тригонометрических функциях. Если мы посмотрим в таблицу, то, действительно, так и получится:

Нам нужно среди всего множества первообразных найти ту, которая проходит через указанную точку:

\[\text{ }\!\!\pi\!\!\text{ }=\arcsin \frac{1}{2}+C\]

\[\text{ }\!\!\pi\!\!\text{ }=\frac{\text{ }\!\!\pi\!\!\text{ }}{6}+C\]

Давайте окончательно запишем:

Вот так все просто. Единственная проблема состоит в том, для того чтобы считать первообразные простых функций, нужно выучить таблицу первообразных. Однако после изучения таблицы производных для вас, я думаю, это не будет проблемой.

Решение задач, содержащих показательную функцию

Для начала запишем такие формулы:

\[{{e}^{x}}\to {{e}^{x}}\]

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}\]

Давайте посмотрим, как это все работает на практике.

Пример № 1

Если мы посмотрим на содержимое скобок, то заметим, что в таблице первообразных нет такого выражения, чтобы ${{e}^{x}}$ стояло в квадрате, поэтому этот квадрат необходимо раскрыть. Для этого воспользуемся формулами сокращенного умножения:

Давайте найдем первообразную для каждого из слагаемых:

\[{{e}^{2x}}={{\left({{e}^{2}} \right)}^{x}}\to \frac{{{\left({{e}^{2}} \right)}^{x}}}{\ln {{e}^{2}}}=\frac{{{e}^{2x}}}{2}\]

\[{{e}^{-2x}}={{\left({{e}^{-2}} \right)}^{x}}\to \frac{{{\left({{e}^{-2}} \right)}^{x}}}{\ln {{e}^{-2}}}=\frac{1}{-2{{e}^{2x}}}\]

А теперь соберем все слагаемые в единое выражение и получим общую первообразную:

Пример № 2

На этот раз степень уже побольше, поэтому формула сокращенного умножения будет довольно сложной. Итак раскроем скобки:

Теперь от этой конструкции попробуем взять первообразную от нашей формулы:

Как видите, в первообразных показательной функции нет ничего сложного и сверхъестественного. Все один считаются через таблицы, однако внимательные ученики наверняка заметят, что первообразная ${{e}^{2x}}$ намного ближе просто к ${{e}^{x}}$ нежели к ${{a}^{x}}$. Так, может быть, существует какой-то более специальное правило, позволяющее, зная первообразную ${{e}^{x}}$, найти ${{e}^{2x}}$? Да, такое правило существует. И, более того, оно является неотъемлемой частью работы с таблицей первообразных. Его мы сейчас разберем на примере тех же самых выражений, с которыми мы только что работали.

Правила работы с таблицей первообразных

Еще раз выпишем нашу функцию:

В предыдущем случае мы использовали для решения следующую формулу:

\[{{a}^{x}}\to \frac{{{a}^{x}}}{\operatorname{lna}}\]

Но сейчас поступим несколько иначе: вспомним, на каком сновании ${{e}^{x}}\to {{e}^{x}}$. Как уже и говорил, потому что производная ${{e}^{x}}$ — это не что иное как ${{e}^{x}}$, поэтому ее первообразная будет равна тому же самому ${{e}^{x}}$. Но проблема в том, что у нас ${{e}^{2x}}$ и ${{e}^{-2x}}$. Сейчас попытаемся найти производную ${{e}^{2x}}$:

\[{{\left({{e}^{2x}} \right)}^{\prime }}={{e}^{2x}}\cdot {{\left(2x \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

Давайте еще раз перепишем нашу конструкцию:

\[{{\left({{e}^{2x}} \right)}^{\prime }}=2\cdot {{e}^{2x}}\]

\[{{e}^{2x}}={{\left(\frac{{{e}^{2x}}}{2} \right)}^{\prime }}\]

А это значит, что при нахождении первообразной ${{e}^{2x}}$ мы получим следующее:

\[{{e}^{2x}}\to \frac{{{e}^{2x}}}{2}\]

Как видите, мы получили тот же результат, что и ранее, однако не воспользовались формулой для нахождения ${{a}^{x}}$. Сейчас это может показаться глупостью: зачем усложнять вычисления, когда есть стандартная формула? Однако в чуть более сложных выражениях вы убедитесь, что этот прием очень эффективен, т.е. использование производных для нахождения первообразных.

Давайте в качестве разминки аналогичным способом найдем первообразную от ${{e}^{2x}}$:

\[{{\left({{e}^{-2x}} \right)}^{\prime }}={{e}^{-2x}}\cdot \left(-2 \right)\]

\[{{e}^{-2x}}={{\left(\frac{{{e}^{-2x}}}{-2} \right)}^{\prime }}\]

При вычислении наша конструкция запишется следующим образом:

\[{{e}^{-2x}}\to -\frac{{{e}^{-2x}}}{2}\]

\[{{e}^{-2x}}\to -\frac{1}{2\cdot {{e}^{2x}}}\]

Мы получили точно тот же результат, но пошли при этом по другому пути. Именно этот путь, который сейчас кажется нам чуть более сложным, в дальнейшем окажется более эффективным для вычисления более сложных первообразных и использование таблиц.

Обратите внимание! Это очень важный момент: первообразные как и производные можно посчитать множеством различных способов. Однако если все вычисления и выкладки будут равны, то ответ получится одним и тем же. Мы убедились в этом только что на примере ${{e}^{-2x}}$ — с одной стороны мы посчитали эту первообразную «напролом», воспользовавшись определением и посчитав ее с помощью преобразований, с другой стороны, мы вспомнили, что ${{e}^{-2x}}$ может быть представлено как ${{\left({{e}^{-2}} \right)}^{x}}$ и уже потом воспользовались первообразной для функции ${{a}^{x}}$. Тем не менее, после всех преобразований результат получился одним и тем же, как и предполагалось.

А теперь, когда мы все это поняли, пора перейти к чему-то более существенному. Сейчас мы разберем две простенькие конструкций, однако прием, который будет заложен при их решении, является более мощным и полезным инструментом, нежели простое «беганье» между соседними первообразными из таблицы.

Решение задач: находим первообразную функции

Пример № 1

Давайте сумму, которая стоит в числители, разложи на три отдельных дроби:

Это довольно естественный и понятный переход — у большинства учеников проблем с ним не возникает. Перепишем наше выражение следующим образом:

А теперь вспомним такую формулу:

В нашем случае мы получим следующее:

Чтобы избавиться от всех этих трехэтажных дробей, предлагаю поступить следующим образом:

Пример № 2

В отличие от предыдущей дроби в знаменателе стоит не произведение, а сумма. В этом случае мы уже не можем разделить нашу дробь на сумму нескольких простых дробей, а нужно каким-то образом постараться сделать так, чтобы в числителе стояло примерно такое же выражение как в знаменателе. В данном случае сделать это довольно просто:

Такая запись, которая на языке математики называется «добавление нуля», позволит нам вновь разделить дробь на два кусочка:

Теперь найдем то, что искали:

Вот и все вычисления. Несмотря на кажущуюся большую сложность, чем в предыдущей задаче, объем вычислений получился даже меньшим.

Нюансы решения

И вот в этом кроется основная сложность работы с табличными первообразными, особенно это заметно на второй задаче. Дело в том, что для того чтобы выделить какие-то элементы, которые легко считаются через таблицу, нам нужно знать, что конкретно мы ищем, и именно в поиске этих элементов и состоит все вычисление первообразных.

Другими словами, недостаточно просто зазубрить таблицу первообразных — нужно уметь видеть что-то, чего пока еще нет, но что подразумевал автор и составитель этой задачи. Именно поэтому многие математики, учителя и профессора постоянно спорят: «А что такое взятие первообразных или интегрирование — это просто инструмент либо это настоящее искусство?» На самом деле, лично на мой взгляд, интегрирование — это никакое не искусство — в нем нет ничего возвышенного, это просто практика и еще раз практика. И чтобы попрактиковаться, давайте решим еще три более серьезных примера.

Тренируемся в интегрировании на практике

Задача № 1

Запишем такие формулы:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

\[\frac{1}{x}\to \ln x\]

\[\frac{1}{1+{{x}^{2}}}\to \text{arctg}x\]

Давайте запишем следующее:

Задача № 2

Перепишем следующим образом:

Итого первообразная будет равна:

Задача № 3

Сложность этой задачи состоит в том, что в отличие от предыдущих функций сверху вообще отсутствует какая-либо переменная $x$, т.е. нам непонятно, что добавлять, вычитать, чтобы получить хоть что-то похожее на то, что стоит снизу. Однако, на самом деле, это выражение считается даже проще, чем любое выражение из предыдущих конструкций, потому что данную функцию можно переписать следующим образом:

Возможно, вы сейчас спросите: а почему эти функции равны? Давайте проверим:

Еще перепишем:

Немного преобразуем наше выражение:

И когда я все это объясняю своим ученикам, практически всегда возникает одна и та же проблема: с первой функцией все более-менее понятно, со второй тоже при везении или практике можно разобраться, но каким альтернативным сознанием нужно обладать, чтобы решить третий пример? На самом деле, не пугайтесь. Тот прием, который мы использовали при вычислении последней первообразной, называется «разложение функции на простейшие», и это очень серьезный прием, и ему будет посвящен отдельный видеоурок.

А пока предлагаю вернуться к тому, что мы только что изучили, а именно, к показательным функциям и несколько усложнить задачи с их содержанием.

Более сложные задачи на решение первообразных показательных функций

Задача № 1

Заметим следующее:

\[{{2}^{x}}\cdot {{5}^{x}}={{\left(2\cdot 5 \right)}^{x}}={{10}^{x}}\]

Чтобы найти первообразной этого выражения, достаточно просто воспользоваться стандартной формулой — ${{a}^{x}}\to \frac{{{a}^{x}}}{\ln a}$.

В нашем случае первообразная будет такая:

Разумеется, на фоне той конструкции, которую мы решали только что, эта выглядит более простой.

Задача № 2

Опять же, несложно заметить, что эту функцию несложно разделить на два отдельных слагаемых — две отдельных дроби. Перепишем:

Осталось найти первообразную от каждого от этих слагаемых по вышеописанной формуле:

Несмотря на кажущуюся большую сложность показательных функций по сравнению со степенными, общий объем вычислений и выкладок получился гораздо проще.

Конечно, для знающих учеников то, что мы только что разобрали (особенно на фоне того, что мы разобрали до этого), может показаться элементарными выражениями. Однако выбирая именно две эти задачи для сегодняшнего видеоурока, я не ставил себе цель рассказать вам еще один сложный и навороченный прием — все, что я хотел вам показать, так это то, что не стоит бояться использовать стандартные приемы алгебры для преобразования исходных функций.

Использование «секретного» приема

В заключение хотелось бы разобрать еще один интересный прием, который, с одной стороны выходит за рамки того, что мы сегодня в основном разбирали, но, с другой стороны, он, во-первых, отнюдь не сложный, т.е. его могут освоить даже начинающие ученики, а, во-вторых, он довольно часто встречается на всевозможных контрольных и самостоятельных работах, т.е. знание его будет очень полезно в дополнение к знанию таблицы первообразных.

Задача № 1

Очевидно, что перед нами что-то очень похожее на степенную функцию. Как нам поступить в этом случае? Давайте задумаемся: $x-5$ отличается от $x$ не так уж и сильно — просто добавили $-5$. Запишем так:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{\left(\frac{{{x}^{5}}}{5} \right)}^{\prime }}=\frac{5\cdot {{x}^{4}}}{5}={{x}^{4}}\]

Давайте попробуем найти производную от ${{\left(x-5 \right)}^{5}}$:

\[{{\left({{\left(x-5 \right)}^{5}} \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\cdot {{\left(x-5 \right)}^{\prime }}=5\cdot {{\left(x-5 \right)}^{4}}\]

Отсюда следует:

\[{{\left(x-5 \right)}^{4}}={{\left(\frac{{{\left(x-5 \right)}^{5}}}{5} \right)}^{\prime }}\]

В таблице нет такого значения, поэтому мы сейчас сами вывели эту формулу, используя стандартную формулу первообразной для степенной функции. Давайте так и запишем ответ:

Задача № 2

Многим ученикам, которые посмотрят на первое решение, может показаться, что все очень просто: достаточно заменить в степенной функции $x$ на линейное выражение, и все станет на свои места. К сожалению, все не так просто, и сейчас мы в этом убедимся.

По аналогии с первым выражением запишем следующее:

\[{{x}^{9}}\to \frac{{{x}^{10}}}{10}\]

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=10\cdot {{\left(4-3x \right)}^{9}}\cdot {{\left(4-3x \right)}^{\prime }}=\]

\[=10\cdot {{\left(4-3x \right)}^{9}}\cdot \left(-3 \right)=-30\cdot {{\left(4-3x \right)}^{9}}\]

Возвращаясь к нашей производной, мы можем записать:

\[{{\left({{\left(4-3x \right)}^{10}} \right)}^{\prime }}=-30\cdot {{\left(4-3x \right)}^{9}}\]

\[{{\left(4-3x \right)}^{9}}={{\left(\frac{{{\left(4-3x \right)}^{10}}}{-30} \right)}^{\prime }}\]

Отсюда сразу следует:

Нюансы решения

Обратите внимание: если в прошлый раз по сути ничего не поменялось, то во втором случае вместо $-10$ появилось $-30$. На что отличается $-10$ и $-30$? Очевидно, что на множитель $-3$. Вопрос: откуда он взялся? Присмотревшись можно увидеть, что она взялась в результате вычислений производной сложной функции — тот коэффициент, который стоял при $x$, появляется в первообразной внизу. Это очень важное правило, которое я изначально вообще не планировал разбирать в сегодняшнем видеоуроке, но без него изложение табличных первообразных было бы неполным.

Итак, давайте еще раз. Пусть есть наша основная степенная функция:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

А теперь вместо $x$ давайте подставим выражение $kx+b$. Что тогда произойдет? Нам нужно найти следующее:

\[{{\left(kx+b \right)}^{n}}\to \frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k}\]

На каком основании мы это утверждаем? Очень просто. Давайте найдем производную написанной выше конструкции:

\[{{\left(\frac{{{\left(kx+b \right)}^{n+1}}}{\left(n+1 \right)\cdot k} \right)}^{\prime }}=\frac{1}{\left(n+1 \right)\cdot k}\cdot \left(n+1 \right)\cdot {{\left(kx+b \right)}^{n}}\cdot k={{\left(kx+b \right)}^{n}}\]

Это то самое выражение, которое изначально и было. Таким образом, эта формула тоже верна, и ею можно дополнить таблицу первообразных, а лучше просто запомнить всю таблицу.

Выводы из «секретного: приема:

  • Обе функции, которые мы только что рассмотрели, на самом деле, могут быть сведены к первообразным, указанным в таблице, путем раскрытия степеней, но если с четвертой степенью мы еще более-менее как-то справимся, то вот девятую степень я бы вообще не рискнул раскрывать.
  • Если бы мы раскрыли степени, то мы бы получили такой объем вычислений, что простая задача заняла бы у нас неадекватно большое количество времени.
  • Именно поэтому такие задачи, внутри которых стоят линейные выражения, не нужно решать «напролом». Как только вы встречаете первообразную, которая отличается от той, что в таблице, лишь наличием выражения $kx+b$ внутри, сразу вспоминайте написанную выше формулу, подставляйте ее в вашу табличную первообразную, и все у вас получится намного быстрее и проще.

Естественно, в силу сложности и серьезности этого приема мы еще неоднократно вернемся к его рассмотрению в будущих видеоуроках, но на сегодня у меня все. Надеюсь, этот урок действительно поможет тем ученикам, которые хотят разобраться в первообразных и в интегрировании.

Урок и презентация на тему: "Первообразная функция. График функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Алгебраические задачи с параметрами, 9–11 классы
"Интерактивные задания на построение в пространстве для 10 и 11 классов"

Первообразная функция. Введение

Ребята, вы умеем находить производные функций, используя различные формулы и правила. Сегодня мы будем изучать операцию, обратную вычислению производной. Понятие производной часто применяется в реальной жизни. Напомню: производная – это скорость изменения функции в конкретной точке. Процессы, связанные с движением и скоростью, хорошо описываются в этих терминах.

Давайте рассмотрим вот такую задачу: "Скорость движения объекта, по прямой, описывается формулой $V=gt$. Требуется восстановить закон движения.
Решение.
Мы хорошо знаем формулу: $S"=v(t)$, где S - закон движения.
Наша задача сводится к поиску функции $S=S(t)$, производная которой равна $gt$. Посмотрев внимательно, можно догадаться, что $S(t)=\frac{g*t^2}{2}$.
Проверим правильность решения этой задачи: $S"(t)=(\frac{g*t^2}{2})"=\frac{g}{2}*2t=g*t$.
Зная производную функции, мы нашли саму функцию, то есть выполнили обратную операцию.
Но стоит обратить внимание вот на такой момент. Решение нашей задачи требует уточнения, если к найденной функции прибавить любое число (константу), то значение производной не изменится: $S(t)=\frac{g*t^2}{2}+c,c=const$.
$S"(t)=(\frac{g*t^2}{2})"+c"=g*t+0=g*t$.

Ребята, обратите внимание: наша задача имеет бесконечное множество решений!
Если в задаче не задано начальное или какое-то другое условие, не забывайте прибавлять константу к решению. Например, в нашей задаче может быть задано положение нашего тела в самом начале движения. Тогда вычислить константу не трудно, подставив ноль в полученное уравнение, получим значение константы.

Как называется такая операция?
Операция обратная дифференцированию называется – интегрированием.
Нахождение функции по заданной производной – интегрирование.
Сама функция будет называться первообразной, то есть образ, то из чего была получена производная функции.
Первообразную принято записывать большой буквой $y=F"(x)=f(x)$.

Определение. Функцию $y=F(x)$ называется первообразной функции $у=f(x)$ на промежутке Х, если для любого $хϵХ$ выполняется равенство $F’(x)=f(x)$.

Давайте составим таблицу первообразных для различных функции. Ее надо распечатать в качестве памятки и выучить.

В нашей таблице никаких начальных условий задано не было. Значит к каждому выражению в правой части таблицы следует прибавить константу. Позже мы уточним это правило.

Правила нахождения первообразных

Давайте запишем несколько правил, которые нам помогут при нахождении первообразных. Все они похожи на правила дифференцирования.

Правило 1. Первообразная суммы равна сумме первообразных. $F(x+y)=F(x)+F(y)$.

Пример.
Найти первообразную для функции $y=4x^3+cos(x)$.
Решение.
Первообразная суммы равна сумме первообразных, тогда надо найти первообразную для каждой из представленных функций.
$f(x)=4x^3$ => $F(x)=x^4$.
$f(x)=cos(x)$ => $F(x)=sin(x)$.
Тогда первообразной исходной функции будет: $y=x^4+sin(x)$ или любая функция вида $y=x^4+sin(x)+C$.

Правило 2. Если $F(x)$ – первообразная для $f(x)$, то $k*F(x)$ – первообразная для функции $k*f(x)$. (Коэффициент можем спокойно выносить за функцию).

Пример.
Найти первообразные функций:
а) $y=8sin(x)$.
б) $y=-\frac{2}{3}cos(x)$.
в) $y={3x}^2+4x+5$.
Решение.
а) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная исходной функции примет вид: $y=-8cos(x)$.

Б) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная исходной функции примет вид: $y=-\frac{2}{3}sin(x)$.

В) Первообразной для $x^2$ служит $\frac{x^3}{3}$. Первообразной для x служит $\frac{x^2}{2}$. Первообразной для 1 служит x. Тогда первообразная исходной функции примет вид: $y=3*\frac{x^3}{3}+4*\frac{x^2}{2}+5*x=x^3+2x^2+5x$.

Правило 3. Если $у=F(x)$ - первообразная для функции $y=f(x)$, то первообразная для функции $y=f(kx+m)$ служит функция $y=\frac{1}{k}*F(kx+m)$.

Пример.
Найти первообразные следующих функций:
а) $y=cos(7x)$.
б) $y=sin(\frac{x}{2})$.
в) $y={-2x+3}^3$.
г) $y=e^{\frac{2x+1}{5}}$.
Решение.
а) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная для функции $y=cos(7x)$ будет функция $y=\frac{1}{7}*sin(7x)=\frac{sin(7x)}{7}$.

Б) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная для функции $y=sin(\frac{x}{2})$ будет функция $y=-\frac{1}{\frac{1}{2}}cos(\frac{x}{2})=-2cos(\frac{x}{2})$.

В) Первообразной для $x^3$ служит $\frac{x^4}{4}$, тогда первообразная исходной функции $y=-\frac{1}{2}*\frac{{(-2x+3)}^4}{4}=-\frac{{(-2x+3)}^4}{8}$.

Г) Слегка упростим выражение в степени $\frac{2x+1}{5}=\frac{2}{5}x+\frac{1}{5}$.
Первообразной экспоненциальной функции является сама экспоненциальная функция. Первообразной исходной функции будет $y=\frac{1}{\frac{2}{5}}e^{\frac{2}{5}x+\frac{1}{5}}=\frac{5}{2}*e^{\frac{2x+1}{5}}$.

Теорема. Если $у=F(x)$ - первообразная для функции $y=f(x)$ на промежутке Х, то у функции $y=f(x)$ бесконечно много первообразных, и все они имеют вид $у=F(x)+С$.

Если во всех примерах, которые были рассмотрены выше, требовалось бы найти множество всех первообразных, то везде следовало бы прибавить константу С.
Для функции $y=cos(7x)$ все первообразные имеют вид: $y=\frac{sin(7x)}{7}+C$.
Для функции $y=(-2x+3)^3$ все первообразные имеют вид: $y=-\frac{{(-2x+3)}^4}{8}+C$.

Пример.
По заданному закону изменения скорости тела от времени $v=-3sin(4t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 1,75.
Решение.
Так как $v=S’(t)$, нам надо найти первообразную для заданной скорости.
$S=-3*\frac{1}{4}(-cos(4t))+C=\frac{3}{4}cos(4t)+C$.
В этой задаче дано дополнительное условие - начальный момент времени. Это значит, что $t=0$.
$S(0)=\frac{3}{4}cos(4*0)+C=\frac{7}{4}$.
$\frac{3}{4}cos(0)+C=\frac{7}{4}$.
$\frac{3}{4}*1+C=\frac{7}{4}$.
$C=1$.
Тогда закон движения описывается формулой: $S=\frac{3}{4}cos(4t)+1$.

Задачи для самостоятельного решения

1. Найти первообразные функций:
а) $y=-10sin(x)$.
б) $y=\frac{5}{6}cos(x)$.
в) $y={4x}^5+{3x}^2+5x$.
2. Найти первообразные следующих функций:
а) $y=cos(\frac{3}{4}x)$.
б) $y=sin(8x)$.
в) $y={(7x+4)}^4$.
г) $y=e^{\frac{3x+1}{6}}$.
3. По заданному закону изменения скорости тела от времени $v=4cos(6t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 2.

Close