Вращательным движением твердого тела вокруг неподвижной оси называется такое его движение, при котором какие – нибудь две точки, принадлежащие телу (или неизменно связанные с ним), остаются во все время движения неподвижными (рис. 2.2).

Рисунок 2.2

Проходящая через неподвижные точки А иВ прямая называетсяосью вращения. Так как расстояние между точками твердого тела должны оставаться неизменными, то очевидно, что при вращательном движении все точки, принадлежащие оси будут неподвижны, а все остальные будут описывать окружности, плоскости которых перпендикулярны оси вращения, а центры лежат на этой оси. Для определения положения вращающегося тела проведем через ось вращения, вдоль которой направлена осьAz , полуплоскостьІ – неподвижную и полуплоскостьІІ врезанную в само тело и вращающуюся вместе с ним. Тогда положение тела в любой момент времени однозначно определится взятым с соответствующим знаком угломφ между этими плоскостями, который назовемуглом поворота тела. Будем считать уголφ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца осиAz ), а отрицательным, если по ходу часовой стрелки. Измерять уголφ будем в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость углаφ от времениt , т.е.

.

Это уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость ω и угловое ускорениеε.

9.2.1. Угловая скорость и угловое ускорение тела

Величина, характеризующая быстроту изменения угла поворота φ с течением времени, называется угловой скоростью.

Если за промежуток времени
тело совершает поворот на угол
, то численно средней угловой скоростью тела за этот промежуток времени будет
. В пределе при
получим

Таким образом, числовое значение угловой скорости тела в данный момент времени равно первой производной от угла поворота по времени.

Правило знаков: когда вращение происходит против хода часовой стрелки, ω> 0, а когда по ходу часовой стрелки, тоω< 0.

или, так как радиан – величина безразмерная,
.

В теоретических выкладках удобнее пользоваться вектором угловой скорости , модуль которого равени который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно против хода часовой стрелки. Этот вектор сразу определяет и модуль угловой скорости, и ось вращения, и направление вращения вокруг этой оси.

Величина, характеризующая быстроту изменения угловой скорости с течением времени, называется угловым ускорением тела.

Если за промежуток времени
приращение угловой скорости равно
, то отношение
, т.е. определяет значение среднего ускорения вращающегося тела за время
.

При стремлении
получаем величину углового ускорения в моментt :

Таким образом, числовое значение углового ускорения тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела во времени.

В качестве единицы измерения обычно применяют или, что тоже,
.

Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным , а если убывает, -замедленным. Когда величиныω иε имеют одинаковые знаки, то вращение будет ускоренным, когда разные – замедленным.По аналогии с угловой скоростью угловое ускорение также можно изобразить в виде вектора, направленного вдоль оси вращения. При этом

.

Если тело вращается ускоренно направление совпадает с, и противоположнопри замедленном вращении.

Если угловая скорость тела остается во время движения постоянной (ω= const ), то вращение тела называетсяравномерным .

Из
имеем
. Отсюда, считая, что в начальный момент времени
угол
, и беря интегралы слева отдо, а справа от 0 доt , получим окончательно

.

При равномерном вращении, когда =0,
и
.

Скорость равномерного вращения часто определяют числом оборотов в минуту, обозначая эту величину через n об/мин. Найдем зависимость междуn об/мин иω 1/с. При одном обороте тело повернется на 2π, а приn оборотах на 2π n ; этот поворот делается за 1 мин, т.е.t = 1мин=60с. Из этого следует, что

.

Если угловое ускорение тела во все время движения остается постоянным (ε= const ), то вращение называетсяравнопеременным .

В начальный момент времени t =0 угол
, а угловая скорость
(- начальная угловая скорость).
;

. Интегрируя левую часть отдо, а правую от 0 доt , найдем

Угловая скорость ω этого вращения
. Если ω и ε имеют одинаковые знаки, вращение будетравноускоренным , а если разные –равнозамедленным.

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.

Вращением твердого тела вокруг неподвижной оси (оси вращения) называется такое его движение, при котором точки тела, лежащие на оси вращения, остаются неподвижными в течение всего времени движения.

Пусть осью вращения является ось , которая может иметь в пространстве любое направление. Одно направление оси принимается за положительное (рис. 28).

Через ось вращения проведем неподвижную плоскость и подвижную , скрепленную с вращающимся телом. Пусть в начальный момент времени обе плоскости совпадают. Тогда в момент времени положение подвижной плоскости и самого вращающегося тела можно определить двугранным углом между плоскостями и соответствующим линейным углом между прямыми, расположенными в этих плоскостях и перпендикулярными оси вращения. Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета полностью определяется в любой момент времени, если задано уравнение

где – любая, дважды дифференцируемая функция времени. Это уравнение называют уравнением вращения твердого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра – угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным – в противоположном направлении, если смотреть с положительного направления оси . Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях, перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введем понятия угловой скорости и углового ускорения. Алгебраической угловой скоростью тела в какой-либо момент времени называют первую производную по времени от угла поворота в этот момент, т.е. . Она является величиной положительной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной – при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Модуль угловой скорости обозначают . Тогда

Алгебраическим угловым ускорением тела называют первую производную по времени от алгебраической скорости, т.е. вторую производную от угла поворота . Модуль углового ускорения обозначим , тогда

Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону (против часовой стрелки). При и , тело вращается ускоренно в отрицательную сторону. Если при , то имеем замедленное вращение в положительную сторону. При и замедленное вращение совершается в отрицательную сторону.

Это движение, при котором все точки тела движутся по окружностям, центры которых лежат на оси вращения.

Положение тела задается двугранным углом (углом поворота).

 =  (t) - уравнение движения.

Кинематические характеристики те­ла:

- угловая скорость, с -1 ;

- угловое ускорение, с -2 .

Величины  и  можно представить в виде векторов
, расположенных на оси вращения, направление вектора таково, что с его конца враще­ние тела видно происходящим против часовой стрелки. Направление совпадает с , если >о.

Положение точки тела: M 0 M 1 = S = h.

Скорость точки
; при этом
.

откуда
;
;
.

Ускорение точки тела ,
‑ вращательное ускорение (в кинематике точки – касательное ‑):
- осестремительное ускорение (в кинематике точки - нор­мальное -).

Модули:
;
;

.

Равномерное и равнопеременное вращение

1. Равномерное:  = const,
;
;
- уравнение движения.

2. Равнопеременное:  = const,
;
;
;
;
- уравнение движения.

2). Механический привод состоит из шкива 1, ремня 2 и ступенчатых колес 3 и 4. Найти скорость рейки 5, а также ускорение точкиM в момент времени t 1 = 1с. Если угловая ско­рость шкива равна  1 = 0,2t , с -1 ; R 1 = 15; R 3 = 40; r 3 = 5; R 4 = 20; r 4 = 8 (в сантиметрах).

Скорость рейки

;

;
;
.

Откуда
;
;
, с -1 .

Из (1) и (2) получим , см.

Ускорение точки M .

, с -2 при t 1 = 1 с; a = 34,84 см/с 2 .

3.3 Плоскопараллельное (плоское) движение твердого тела

Это движение, при котором все точки тела движутся в плоскостях, параллельных некоторой неподвижной пло­скости.

Все точки тела на любой прямой, перпендикулярной неподвижной пло­скости, движутся одинаково. Поэтому анализ плоского движения тела сво­дится к исследованию движения пло­ской фигуры (сечение S) в ее плоскости (xy).

Это движение можно представить как совокупность поступательного движения вместе с некоторой произвольно выбранной точкой а, называемой полюсом , и вращательного движе­ния вокруг полюса.

Уравнения движения плоской фигуры

x а = x a (t); у а = у а; j = j(t)

Кинематические характеристи­ ки плоской фигуры:

- скорость и ускорение по­люса; w, e - угловая скорость и угловое ускорение (не зависят от выбора полюса).

Уравнения движения любой точки плоской фигуры (B) можно получить, проектируя векторное равенство
на осиx и у

x 1 B , y 1 B - координаты точки в системе координат, свя­занной с фигурой.

Определение скоростей точек

1). Аналитический способ .

Зная уравнения движения x n = x n (t); y n = y n (t), находим
;
;
.

2). Теорема о распределении скоростей.

Дифференцируя равенство
, получим
,

- скорость точки B при вращении пло­ской фигуры вокруг полюса A;
;

Формула распределения скоро­стей точек плоской фигуры
.

Скорость точкиM колеса, катящегося без скольжения

;
.

3). Теорема о проекциях ско­ростей.

Проекции скоростей двух то­чек тела на ось, проходящую че­рез эти точки, равны. Проектируя равенство
на осьx, имеем

Пример

Определить скорость натекания воды v Н на руль корабля, если извест­ны (скорость центра тяжести суд­на),b и b K (углы дрейфа).

Решение: .

4). Мгновенный центр скоростей (МЦС).

Скорости точек при плоском движении тела можно определять по формулам вращательного движения, используя понятие МЦС.

МЦС - точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю (v p = 0).

В общем случае МЦС - точка пере­сечения перпендикуляров к направле­ниям скоростей двух точек фигуры.

Принимая точку P за полюс, имеем для произвольной точки

, тогда

Откуда
- угловая скорость фигуры и
,т.е. скорости точек плоской фигуры пропор­циональны их расстояниям до МЦС.

Возможные случаи нахождения МЦС

Качение без скольжения


МЦС - в бес­конечности

Случай б соответствует мгновенно поступательному распределению скоростей.

1). Для заданного положения механизма найтиv B , v C ,v D , w 1 , w 2 , w 3 , если в данный момент v A = 20 см/с; BC = CD = 40 см; OC = 25 см; R = 20 см.

Решение МЦС катка 1 - точка P 1:

с -1 ;
см/с.

МЦС звена 2 - точка P 2 пересечения перпендикуляров к на­правлениям скоростей точек B и C:

с -1 ;
см/с;
см/с;
с -1 .

2). Груз Q поднимается с помощью ступенчатого бара­бана 1, угловая скорость которого w 1 = 1 с -1 ; R 1 = 3r 1 = 15 см; AE || BD. Найти скорость v C оси подвижного блока 2.

Находим скорости точек A и B:

v A = v E = w 1* R 1 = 15 см/с; v B = v D = w 1* r 1 = 5 см/с.

MЦС блока 2 - точка P. Тогда
, откуда
;
;
см/с.


Close