Эта оболочка выполняет транспортные, защитные и структурные функции. У многих простейших отсутствует клеточная стенка. Животных природа также обделила этим элементом. Оболочка обнаруживается у большинства прокариот, архей, представителей флоры.

Клеточная стенка бактерий

Оболочка включает в себя муреин (пептидогликан). Она бывает грамположительной и грамотрицательной. Клеточная стенка бактерий первого типа содержит исключительно толстый слой пептидогликана. Он плотно прилегает к мембране и пронизан липотейховыми и тейховыми кислотами. Грамотрицательная клеточная стенка содержит более тонкий слой пептидогликана. Между плазматической мембраной и им присутствует периплазматическое пространство. Снаружи оболочка окружается еще одним слоем. Он представлен в виде липополисахарида. Эта мембрана выступает в качестве пирогенного эндотоксина.

Клеточная стенка растений

В качестве ключевого элемента в оболочке выступает целлюлоза. Клеточная стенка считается важнейшей особенностью высших представителей флоры. Она представляет собой преимущественно полимерный сложноорганизованный матрикс. Клетка, в которой отсутствует стенка, именуется протопластом. В оболочках присутствуют специальные углубления. Через эти поры проходят плазмодесмы - цитоплазматические канальца. Ими одна клеточная стенка растений соединяется с другой. Эти канальца обеспечивают обмен веществ между ними. Следует сказать, что клеточная стенка грибов намного проще, чем оболочка элементов высших представителей флоры.

Химический состав

Он отличается в зависимости от вида клетки и ткани, в которой она присутствует. В некоторых случаях химический состав изменяется и в пределах одной оболочки вокруг протопласта. Целлюлозные молекулы посредством водородных связей формируют пучки. Они именуются микрофибриллами. Переплетенные пучки образуют каркас оболочки. Клеточная стенка грибов в большинстве случаев в этом участке содержит хитин. Микрофибриллы находятся в матриксе оболочки. Он, в свою очередь, включает в себя разные химические вещества. Среди них преобладают полисахариды. К ним, в частности, относят пектиновые вещества и гемицеллюлозы. Рассмотрим их.

Гемицеллюлозы

Они представляют собой группу полисахаридов. Это полимеры гексоз и пентоз - глюкозы, галактозы, маннозы, ксилозы и пр. Гемицеллюлозные молекулы, как, собственно, и целлюлозные, представлены в форме цепи. Однако от последних их отличает меньшая длина, сильная разветвленность и меньшая упорядоченность. Эти цепи легче разрушаются ферментами и растворяются.

Пектиновые вещества

Они представлены полимерами, сформированными из моносахаридов (галактозы и арабинозы), галактуроновой (сахарной) кислоты, метилового спирта. Молекулы пектиновых веществ длинные. Они могут быть разветвленными либо линейными. В них присутствует большое число карбоксильных групп. Это обеспечивает возможность их соединения с ионами Са2- и Mg2+. В результате появляются студнеобразные, клейкие пектаты кальция и магния. Впоследствии из них формируются срединные пластинки, которыми одна клеточная стенка прикрепляется к другой. Ионы металлов могут обмениваться на иные катионы. Это обуславливает катионообменную способность оболочек. Пектиновые вещества и пектаты в большом количестве присутствуют в клеточных стенках множества плодов. Поскольку при их извлечении и последующем добавлении сахара формируются гели, пектины применяют в качестве желеобразующих веществ при изготовлении мармелада.

Матрикс

Кроме углеводных элементов, в нем присутствует структурный протеин экстенеин - гликонротеин. По своему составу этот белок близок к коллагенам, присутствующим в межклеточном пространстве животных. Матрикс занимает порядка 60 % сухого вещества оболочки. Он не просто заполняет между микрофибриллами промежутки, а формирует прочные химические (ковалентные и водородные, в частности) связи между непосредственно пучками целлюлозных молекул и макромолекулами. Это обеспечивает необходимую прочность стенки клетки, ее пластичность и эластичность.

Лигнин

Он выступает в качестве основного инкрустирующего вещества в оболочке. Лигнин представляет собой полимер с неразветвленными молекулами, состоящими из ароматических спиртов. После прекращения роста элементов начинается интенсивная лигнификация. В ходе нее молекулы целлюлозы пропитываются полимером. Лигнин может накапливаться в виде отдельных участков - колец, сетки или спиралей. Это, в частности, характерно для клеточных стенок ксилемы - проводящей ткани. Накопление может происходить и в виде сплошного слоя. Не откладывается полимер только в тех участках, где происходят контакты соседних клеток в виде плазмодесм. Лигнин, скрепляя волокна целлюлозы, действует как жесткий и очень твердый каркас. Он усиливает прочность оболочек на сжатие и растяжение. Лигнин также обеспечивает дополнительную защиту от химических и физических воздействий, понижает водопроницаемость. Содержание полимера в оболочке может достигать 30 %. Инкрустация лигнина зачастую приводит к одревеснению стенок. Это, в свою очередь, влечет за собой отмирание содержимого. В сочетании с целлюлозой лигнин придает специфические свойства древесине. Это, в свою очередь, делает ее универсальным стройматериалом.

Жироподобные вещества

Они также могут откладываться на оболочку. К жироподобным веществам относят кутин, воск и суберин. Последний накапливается изнутри клетки. Он делает ее почти непроницаемой для растворов и воды. В результате происходит отмирание протопласта и заполнение клетки воздухом. Этот процесс именуется опробковением. Он наблюдается в покровных тканях у многолетних древесных насаждений. Оболочка эпидермальных клеток защищается восками и кутином. Они являются гидрофобными веществами. Их предшественники секретируются на поверхность из цитоплазмы. Там происходит их полимеризация. Кутиновый слой, как правило, пронизан полисахаридными элементами (пектином и целлюлозой). Он формирует кутикулу. Воск зачастую накапливается в кристаллическом виде на поверхности элементов растений (на плодах, листьях) и образует специфический налет. Вместе с кутикулой он обеспечивает защиту клетке от проникновения инфекций и различных повреждений. Кроме этого, они снижают испарение воды.

Минерализация

Она происходит в стенках эпидермальных клеток некоторых растений (осок, злаков и прочих). Минеральные вещества в них накапливаются в достаточно большом количестве. В первую очередь обнаруживаются кремнезем и карбонат кальция. В процессе минерализации стебли и листья насаждений приобретают жесткость, твердость и в меньшей степени подвергаются повреждению.

Заключение

Клеточные стенки растений исполняют множество функций. В частности, они обеспечивают жесткость для механической и структурной поддержки, придают форму, направляют рост. Оболочка препятствует тургору - осмотическому давлению. Это особенно важно в случаях, когда в растение поступает дополнительный объем воды.

Новая оболочка формируется в процессе деления клетки в заключительной стадии митоза – телофазе. После расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом. Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточная пластинка, или фрагмопласт.

В центральной части ее располагается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи . В состав первичной клеточной стенки входит также небольшой количество белка (около 10%), богатого гидроксипролином и имеющего множество коротких олигосахаридных цепей, что определяет этот белок как гликопротеид.

После образования срединной пластинки протопласт соседних клеток откладывает на нее первичную оболочку. Слой целлюлозы, который откладывается во время роста клетки, называется первичной клеточной оболочкой .

Помимо целлюлозы, гемицеллюлозы и пектина, первичные оболочки содержат также и структурный белок – гликопротеин . Первичные оболочки могут и лигнифицироваться, хотя, как правило, лигнин им не свойственен. Однако наиболее характерную часть первичной оболочки составляет пектиновый компонент . Он придает оболочке пластичность, позволяет ей растягиваться, по мере удлинения органов: корня, стебля, листа. Пектиновые вещества способны сильно набухать, поэтому первичные оболочки содержат много воды (60-90%). На долю гемицеллюлоз и пектиновых веществ, приходится 50-60% сухого веса первичной оболочки, содержание целлюлозы не превышает 30%, структурный белок занимает до 10%.

Продолжающийся процесс выделения веществ матрикса осуществляется за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождение их содержимого за пределы цитоплазмы. Здесь же, вне клетки, на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка . С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями .

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерние происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идут наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

В период растяжения фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембранам клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение . Содержание различных веществ примерно таково: воды очень мало, целлюлозы 40-50%, лигнина 25-30%, гемицеллюлозы 20-30% и практически нет пектиновых веществ.

Вторичная оболочка не всегда располагается равномерно. У некоторых специализированных водопроводящих клеток она имеет вид колец или спиральных лент . Такие клетки сохраняют способность к продольному растяжению, и после отмирания.

Часто под вторичной оболочкой обнаруживают третичную оболочку , которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Клетки растений окружены плотной полисахаридной оболочкой, выстланной изнутри плазмалеммой.

Образование клеточной стенки происходит в метафазе и телофазе клеточного деления. В экваториальной зоне деления возникает срединная пластинка, состоящая из пектата кальция, которая, нарастая от цент­ра к периферии, отделяет одну новообразованную клетку от дру­гой. Срединная пластинка с той и другой стороны покрывается первичной клеточной стенкой. Рост в толщину происходит за счет наложения новых слоев со стороны содержимого каждой клетки. Рост клетки в длину начинается с разрыхления матрикса. В этом процессе важную роль играют фитогормоны. В образовавшиеся полости поступают новые порции материала, из которого строится клеточная стенка. Синтез и транспорт этих веществ осуществляются главным образом вакуолями аппарата Гольджи.

Клеточную стенку делящихся и растущих растяжением клеток называют первичной. После прекращения роста клетки на первичную клеточную стенку изнутри откладываются новые слои и возникает прочная вторичная клеточная стенка.

В состав клеточной стенки входят структурные компоненты (целлюлоза у растений, хитин у грибов), компоненты матрикса стенки (гемицеллюлозы, пектин, белки), инкрустирующие компо­ненты (лигнин, суберин) и вещества, откладывающиеся на поверхности стенки (кутин и воска). Клеточные стенки могут содержать также силикаты и карбонаты кальция.

Целлюлоза (полимер b-D-глюкозы), гемицеллюлозы (полимеры гексоз и пентоз) и пектиновые вещества (производные уроновых кислот) являются углеводными компонентами клеточных стенок. Целлюлоза и пектиновые вещества адсорбируют воду, обеспечивая оводненность клеточной стенки. Пектиновые вещества, содержащие много карбоксильных групп, связывают ионы двухвалентных металлов, которые способны обмениваться на другие катионы (Н + , К + и т.д.). Это обусловливает катионообменную способность клеточных стенок растений. Помимо углеводных компонентов в состав матрикса клеточной стенки входит также структурный белок, называемый экстенсином. Это гликопротеин, содержащий более 20% L-оксипролина от суммы аминокислот. По этому признаку белок клеточных стенок растений сходен с меж­клеточным белком животных - коллагеном.

Целлюлоза: А – структура молекулы целлюлозы; Б – ассоциации молекулы целлюлозы: 1 – мицелла, 2 – микрофибрилла, 3 – макрофибрилла

Основным инкрустирующим веществом клеточной стенки является лигнин. Интенсивная лигнификация клеточных стенок начинается после прекращения роста клетки. Лигнин пред­ставляет собой полимер с неразветвленной молекулой, состоя­щей из ароматических спиртов (п-кумарового, кониферилового, синапового). Разрушение и конденсация лигнина в почве - один из факторов образования гумуса. Интенсивная лигнификация (пропитка слоев целлюлозы лигнином) клеточных оболочек начинается после прекращения роста клетки. Лигнин может откладываться отдельными участками - в виде колец, спиралей или сетки, как это наблюдается в оболочках клеток проводящей ткани - ксилемы, или сплошным слоем, за исключением тех мест, где осуществляются контакты между соседними клетками в виде плазмодесм. Лигнин скрепляет целлюлозные волокна и действует как очень твердый и жесткий каркас, усиливающий прочность клеточных стенок на растяжение и сжатие. Он же обеспечивает клеткам дополнительную защиту от физических и химических воздействий, снижает водопроницаемость. Содержание лигнина в оболочке достигает 30%. Инкрустация им клеточных оболочек приводит к их одревеснению, которое часто влечет за собой отмирание живого содержимого клетки. Лигнин в сочетании с целлюлозой придает особые свойства древесине, которые делают ее незаменимым строительным материалом.


В регуляции водного и теплового режима растений участвуют ткани, стенки клеток которых пропитаны суберином. Отложение суберина делает стенки трудно проницаемы­ми для воды и растворов (например, в эндодерме, перидерме). Суберин откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов. В результате протопласт клетки отмирает и клетка заполняется воздухом. Такой процесс называется опробковением. Наблюдается опробковение оболочки клеток в покровных тканях многолетних древесных растений - перидерме, корке, а также в эндодерме корня. Суберин - основное вещество пробковых образований, которому эти образования главным образом обязаны своими свойствами: непроницаемостью для воды, для газов и малой теплопроводностью..

Поверхность эпидермальных клеток растений защищена гидрофобными веществами - кутином и восками: Предшествен­ники этих соединений секретируются из цитоплазмы на по­верхность, где и происходит их полимеризация. Слой кутина обычно пронизан полисахаридными компонентами стенки (целлюлозой, пектином) и образует кутикулу. Кутикула участвует в регуляции водного режима тканей и защищает клетки от повреждений и проникновения инфекции.

В оболочках эпидермальных клеток некоторых растений (злаков, осок и др.) накапливается большое количество минеральных веществ (минерализация), в первую очередь карбоната кальция и кремнезема. При минерализации листья и стебли растений становятся жесткими, твердыми и в меньшей степени поедаются животными.

В первичных клеточных стенках на долю целлюлозы приходится до 30% сухой массы стенки. Количество гемицеллюлоз и пектиновых веществ меняется в зависимости от объекта. Вместе с белками пектиновые вещества могут составлять около 30% сухой массы клетки, причем количество белка достигает 5 - 10%. Около 40% приходится на долю гемицеллюлоз.

Растительные клетки, подобно клеткам прокариот и грибов, заключены в сравнительно жесткую клеточную стенку. Некоторые клетки лишены клеточной стенки. Это клетки, служащие для полового и бесполого размножения (зооспоры и гаметы водорослей и низших грибов, мужские гаметы высших растений ), а также у некоторых представителей золотистых, желто-зеленых и пирофитовых водорослей (они не способны сохранять постоянную форму тела, их перемещение происходит с помощью выростов - псевдоподий – амебоидное движение) .

Образующие клеточную стенку вещества вырабатываются плазмалеммой и аппаратом Гольджи и откладываются снаружи клетки.

Этими веществами являются полисахариды:

1. Целлюлоза - у высших растений (у водорослей – целлюлоза, маннан и ксилан)

2. Гемицеллюлоза (ее молекулы имеют форму цепей, как и у целлюлозы, однако ее цепи короче, менее упорядочены).

3. Пектиновые вещества (занимают пространство между макрофибриллами целлюлозы);

Также в состав клеточной стенки входит структурный белок («прошивает» полисахаридный каркас поперек).

Клеточная стенка, отлагающаяся во время деления клеток растения, называется первичной клеточной стенкой (рис. 1).

Рис. 1. Схема строения первичной клеточной стенки

Позже в результате утолщения она может превратиться во вторичную клеточную стенку .

Молекулы целлюлозы образуют тонкие нити. Соединяясь друг с другом по нескольку десятков с помощью водородных связей, нити целлюлозы формируют микрофибриллы, а они – макрофибриллы. Макрофибриллы погружены в пектиновый матрикс и «прошиты» молекулами структурного белка.

Молекулы целлюлозы отличает большая прочность на разрыв, сравнимая с прочностью стали . Целлюлоза не растворима ни в горячей воде, ни в концентрированных щелочах, ни в органических растворителях.

Однако клеточная стенка проницаема для воды и растворенных в ней веществ, это связано со свойствами пектинов.

Пространство между клеточными стенками соседних клеток называется срединной пластинкой . Она состоит их клейких студнеобразных пектатов магния и кальция. В клеточных стенках некоторых созревающих плодов нерастворимые пектиновые вещества постепенно превращаются в растворимые пектины. При добавлении сахара эти последние образуют гели; поэтому их используют при приготовлении варенья и желе.

Клеточные стенки не одинаковы по толщине на всем своем протяжении, а имеют тонкие участки, которые называются первичными поровыми полями (рис. 2) .

Рис. 2. Первичные поровые поля, поры и плазмодесмы. А. Паренхимная клетка с первичной клеточной оболочкой и первичными поровыми полями – тонкими участками оболочки. Б. Клетки со вторичными клеточными стенками и многочисленными простыми порами. В. Пара простых пор. Г. Пара окаймленных пор.


Пора здесь – наиболее тонкое место в оболочке (углубление), хотя пора может содержать и отверстие. Через поры осуществляется связь между соседними клетками. Сквозь поровые поля и поры проходят тонкие тяжи цитоплазмы – плазмодесмы.

Свойства первичной клеточной стенки:

1. эластична , по мере роста клетки растягивается и растет;

2. создает определенную прочность клетки и способна защитить ее от механических повреждений;

3. прозрачна, пропускает солнечные лучи ;

4. является местом передвижения воды и неорганических веществ, растворенных в ней.

Первичная клеточная стенка может сохраняться до конца жизни клетки, если ее отложение прекращается вместе с прекращением роста клетки.

Если рост клетки прекращается, а отложение элементов оболочки изнутри продолжается, образуется более прочная вторичная клеточная стенка . Они особенно нужны клеткам, выполняющим механическую и проводящую воду функции . Протопласт клетки (живое содержимое клетки), как правило, отмирает после отложения вторичной клеточной стенки. В ней больше целлюлозы, а пектиновые вещества и структурный белок отсутствуют.

Во вторичной клеточной стенке выделяют три слоя – наружный, средний и внутренний (рис. 3) . Они отличаются направлением расположения целлюлозных микрофибрилл.

Рис. 3. Схема расположения микрофибрилл целлюлозы в структуре


Клеточная стенка растений выполняет ряд важных функций. Окружая растительную клетку со всех сторон, она служит связующим звеном между ней и соседними клетками. Соединяясь между собой тонкими нитями цитоплазмы – плазмодесмами, через которые осуществляется перемещение веществ из клетки в клетку.

Благодаря тому, что первичная оболочка эластична, клетка в этот период интенсивно растет. После прекращения роста образуется вторичная оболочка, в состав которой входит лигнин и ряд других веществ - придающий клетке прочность, жесткость. Эти свойства особенно важны для наземных растений: во-первых, это прочный «скелет», во-вторых, защита от избыточной потери воды. Клеточная оболочка прозрачна, поэтому солнечные лучи легко проникают внутрь клетки к хлоропластам.

Цитоскелет представляет собой белковые, неветвящиеся полимеры, участвующие в процессе перемещения клеточных компонентов, а также выполняют каркасную скелетную роль. Также эти компоненты участвуют в процессе деления клетки, формируя нити веретена деления.

Одревеснение, опробковение и кутинизация клеточных оболочек

Сильному метаморфозу состава и структуры подвергается оболочка при одревеснении, опробковении и кутинизации. Одревеснение состоит в том, что часть целлюлозной толщи стенки пропитывается лигнином. Ароматическое вещество лигнин является основным инкрустирующим веществом клеточной стенки. Это полимер с неразветвленной молекулой, состоящей из ароматических компонентов. Мономерами лигнина могут быть конифериловый, синаповый и другие спирты.

Интенсивная лигнификация клеточных стенок начинается после прекращения роста клетки. Отношение между целлюлозой и лигнином в одревесневших слоях оболочки было признано аналогичным конструкции железобетонных сооружений. Лигнин, подобно бетонной массе, заполняет промежутки ячеек сетки; при этом арматура и заполнение образуют монолитное целое. Одревеснение понижает пластичность клеточных стенок, закрепляет их форму. Однако клетки с одревесневшими стенками могут оставаться живыми десятки лет. Лигнин обладает и консервирующими свойствами и поэтому действуют как антисептик, придавая тканям повышенную стойкость по отношению к разрушительному действию грибов и бактерий.

Весьма распространено в растительном мире наличие в толще клеточных оболочек, либо на поверхности веществ, называемых кутинами, суберинами и спорополленинами.

Суберины. Клеточные оболочки, содержащие суберины, называют опробковевшими. Суберин отлагается внутри клеточной оболочки и поэтому относится к инкрустирующим веществам. Обычно суберин составляет пластинку, находящуюся в так называемом вторичном слое клеточной стенки.

Кутины – это адкрустирующие гидрофобные вещества, покрывающие поверхность эпидермальных клеток растений в виде пленки – кутикулы.

Спорополленины имеются в наружных оболочках спор, в том числе пыльцевых зерен голосеменных и покрытосеменных растений.

Общими для них являются следующие черты.

Все они высокополимерные вещества, обязательным компонентом которых являются насыщенные и ненасыщенные жирные кислоты и жиры.

От жиров, встречающихся в полости клетки, в протопласте, они отличаются нерастворимостью в ряде реактивов.

Эти вещества стойки даже по отношению к концентрированной серной кислоте.

Суберины, кутины и спорополленины почти непроницаемы для воды, воздуха. Эти вещества находятся в оболочках периферических тканей и защищают органы растений от излишней потери воды.

Ослизнение и минерализация клеточных оболочек

При ослизнении клеточных оболочек образуются слизи и камеди. Те и другие представляют собой высокомолекулярные углеводы, состоящие большей частью из пентоз и их производных. Они нерастворимы в спирте, эфире, а в воде сильно набухают.

Резкой границы между ними не установлено. Обычно их различают по консистенции в набухшем состоянии: камеди клейки и могут вытягиваться в нити, слизи же сильно расплываются и в нити не тянутся. В сухом состоянии камеди и слизи очень тверды и хрупки, и лишь при смачивании водой переходят в тягучее желеобразное состояние.

Значение ослизнения клеточных стенок во многих случаях очевидно. Например, ослизненные наружные слои клеток кожицы семян, набухая весной, входят в соприкосновение с почвой.

Слизь, благодаря клейкости, закрепляет семена на влажном месте и, поглощая воду из почвы, улучшает водный режим проростка, передавая ему воду и защищая от высыхания. Также слизь может использоваться как запасное, питательное вещество.

В более поздней стадии развития оболочки содержат минеральные вещества, причем в некоторых случаях в весьма значительных количествах. Эти вещества могут отлагаться и в толще оболочки и на ее внутренней и наружной поверхности, или же в особых выростах клеточных стенок.

По структуре эти отложения могут быть аморфными и кристаллическими.

Наиболее распространены отложения кремнезема и солей извести. Кальций встречается в клеточных оболочках в виде углекислой, щавелевокислой и пектиновокислой извести.

Широко распространено наличие кальция в срединной пластинке клеточных стенок.

Формирование и рост клеточной стенки

Новая оболочка формируется в процессе деления клетки в заключительной стадии митоза – телофазе. После расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом. Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточная пластинка, или фрагмопласт. В центральной части ее располагается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи. В состав первичной клеточной стенки входит также небольшой количество белка (около 10%), богатого гидроксипролином и имеющего множество коротких олигосахаридных цепей, что определяет этот белок как гликопротеид.

После образования срединной пластинки протопласт соседних клеток откладывает на нее первичную оболочку. Слой целлюлозы, который откладывается во время роста клетки, называется первичной клеточной оболочкой. Помимо целлюлозы, гемицеллюлозы и пектина, первичные оболочки содержат также и структурный белок – гликопротеин. Первичные оболочки могут и лигнифицироваться, хотя, как правило, лигнин им не свойственен. Однако наиболее характерную часть первичной оболочки составляет пектиновый компонент. Он придает оболочке пластичность, позволяет ей растягиваться, по мере удлинения органов: корня, стебля, листа. Пектиновые вещества способны сильно набухать, поэтому первичные оболочки содержат много воды (60-90%). На долю гемицеллюлоз и пектиновых веществ, приходится 50-60% сухого веса первичной оболочки, содержание целлюлозы не превышает 30%, структурный белок занимает до 10%. Продолжающийся процесс выделения веществ матрикса осуществляется за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождение их содержимого за пределы цитоплазмы. Здесь же, вне клетки, на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка. С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями.

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерние происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идут наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

В период растяжения фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембранам клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение. Содержание различных веществ примерно таково: воды очень мало, целлюлозы 40-50%, лигнина 25-30%, гемицеллюлозы 20-30% и практически нет пектиновых веществ.

Вторичная оболочка не всегда располагается равномерно. У некоторых специализированных водопроводящих клеток она имеет вид колец или спиральных лент. Такие клетки сохраняют способность к продольному растяжению,и после отмирания.

Часто под вторичной оболочкой обнаруживают третичную оболочку, которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Функции клеточной стенки

Являясь продуктом метаболической деятельности протопласта клеточная стенка выполняет ряд функций:

Она защищает клеточное содержимое от повреждений и инфекций (Защитная функция);

Клеточная стенка поддерживает форму и определяет размер клетки;

Стенка играет скелетную (опорную) роль, которая особенно возрастает у наземных растений;

Она имеет большое значение в росте и дифференцировании клетки;

Стенка участвует в ионном обмене и поглощении клеткой веществ;

Единый апопласт способствует перемещению веществ из клетки в клетку внеклеточным путем (проводящая функция);

Структура клеточных стенок предохраняет клетки от избыточной потери воды (покровная функция).

Эволюция клеточной стенки

Примитивные клетки были окружены слизистым чехлом, состоящим из пектиновых веществ, как и фрагмопласт, возникающий при митотическом делении в клетках современных растений. Совершенствование защитной функции клеточной оболочки привела к появлению в ее составе гемицеллюлозных компонентов. Форма клетки могла поддерживаться кремниевым и карбонатным наружным чехлом, сохранившимся у некоторых современных водорослей. По предположению Фрей-Висслинга первичный слизистый углеводный чехол мог быть предшественником матрикса клеточной стенки.

С возникновением автотрофного способа питания в оболочках клеток в качестве структурного компонента появилась целлюлоза. Выход растений на сушу поставил клеточную стенку перед необходимостью выполнять функцию опоры тела в воздухе. Именно целлюлоза оказалась наиболее оптимальным материалом (в меру прочным и в то же время эластичным) в динамичной и переменчивой среде, где подземным органам растений пришлось испытывать более сильные нагрузки.

Выход на сушу, и увеличение размеров растительных организмов привели также к необходимости снабжения клеток водой. Именно с развитием у наземных растений сосудов, проводящих воду, связывают появление в клеточных стенках лигнина. Лигнин не обнаружен у ископаемых океанских и современных водных растений.

Цитоскелет

Понятие о цитоскелете или скелетных компонентах цитоплазмы разных клеток было высказано Н.К.Кольцовым, выдающимся русским цитологом ещё в начале ХХ века. К сожалению, они были забыты, и только в конце 1950 годов с помощью электронного микроскопа эта скелетная система была переоткрыта.

Цитоскелетные компоненты представлены нитевидными, неветвящимися белковыми комплексами, или филаментами (тонкими нитями). Существуют три системы филаментов, различающихся по химическому составу, ультраструктуре и функциональным свойствам. Самые тонкие нити – это микрофиламенты. К другой группе нитчатых структур относятся микротрубочки, третья группа представлена промежуточными филаментами.

Все эти фибриллярные структуры могут участвовать в качестве составных частей в процессе физического перемещения клеточных компонентов или даже целых клеток, кроме того, в ряде случаев они выполняют сугубо каркасную скелетную роль. Элементы цитоскелета встречаются во всех без исключения эукариотических клетках. Степень выраженности их в разных клетках может быть различной.

Общим для элементов цитоскелета является то, что все они представляют собой белковые, неветвящиеся фибриллярные полимеры, нестабильные, способные к полимеризации и деполимеризации. Такая нестабильность может приводить к некоторым вариантам клеточной подвижности, например к изменению формы клетки. Некоторые компоненты цитоскелета при участии специальных дополнительных белков могут стабилизироваться или образовывать сложные фибриллярные ансамбли и играть только каркасную роль.



Close